3.1018 \(\int \frac{x^{3/2} (A+B x)}{(a+b x+c x^2)^2} \, dx\)

Optimal. Leaf size=321 \[ \frac{\left (-\frac{4 a A c^2-8 a b B c+A b^2 c+b^3 B}{\sqrt{b^2-4 a c}}-6 a B c+A b c+b^2 B\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{x}}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{2} c^{3/2} \left (b^2-4 a c\right ) \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{\left (\frac{4 a A c^2-8 a b B c+A b^2 c+b^3 B}{\sqrt{b^2-4 a c}}-6 a B c+A b c+b^2 B\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{x}}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{\sqrt{2} c^{3/2} \left (b^2-4 a c\right ) \sqrt{\sqrt{b^2-4 a c}+b}}-\frac{\sqrt{x} \left (x \left (-2 a B c-A b c+b^2 B\right )+a (b B-2 A c)\right )}{c \left (b^2-4 a c\right ) \left (a+b x+c x^2\right )} \]

[Out]

-((Sqrt[x]*(a*(b*B - 2*A*c) + (b^2*B - A*b*c - 2*a*B*c)*x))/(c*(b^2 - 4*a*c)*(a + b*x + c*x^2))) + ((b^2*B + A
*b*c - 6*a*B*c - (b^3*B + A*b^2*c - 8*a*b*B*c + 4*a*A*c^2)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*Sqrt[x])
/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*c^(3/2)*(b^2 - 4*a*c)*Sqrt[b - Sqrt[b^2 - 4*a*c]]) + ((b^2*B + A*b*c -
 6*a*B*c + (b^3*B + A*b^2*c - 8*a*b*B*c + 4*a*A*c^2)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*Sqrt[x])/Sqrt[
b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*c^(3/2)*(b^2 - 4*a*c)*Sqrt[b + Sqrt[b^2 - 4*a*c]])

________________________________________________________________________________________

Rubi [A]  time = 1.43058, antiderivative size = 321, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.174, Rules used = {818, 826, 1166, 205} \[ \frac{\left (-\frac{4 a A c^2-8 a b B c+A b^2 c+b^3 B}{\sqrt{b^2-4 a c}}-6 a B c+A b c+b^2 B\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{x}}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{2} c^{3/2} \left (b^2-4 a c\right ) \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{\left (\frac{4 a A c^2-8 a b B c+A b^2 c+b^3 B}{\sqrt{b^2-4 a c}}-6 a B c+A b c+b^2 B\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{x}}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{\sqrt{2} c^{3/2} \left (b^2-4 a c\right ) \sqrt{\sqrt{b^2-4 a c}+b}}-\frac{\sqrt{x} \left (x \left (-2 a B c-A b c+b^2 B\right )+a (b B-2 A c)\right )}{c \left (b^2-4 a c\right ) \left (a+b x+c x^2\right )} \]

Antiderivative was successfully verified.

[In]

Int[(x^(3/2)*(A + B*x))/(a + b*x + c*x^2)^2,x]

[Out]

-((Sqrt[x]*(a*(b*B - 2*A*c) + (b^2*B - A*b*c - 2*a*B*c)*x))/(c*(b^2 - 4*a*c)*(a + b*x + c*x^2))) + ((b^2*B + A
*b*c - 6*a*B*c - (b^3*B + A*b^2*c - 8*a*b*B*c + 4*a*A*c^2)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*Sqrt[x])
/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*c^(3/2)*(b^2 - 4*a*c)*Sqrt[b - Sqrt[b^2 - 4*a*c]]) + ((b^2*B + A*b*c -
 6*a*B*c + (b^3*B + A*b^2*c - 8*a*b*B*c + 4*a*A*c^2)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*Sqrt[x])/Sqrt[
b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*c^(3/2)*(b^2 - 4*a*c)*Sqrt[b + Sqrt[b^2 - 4*a*c]])

Rule 818

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> -Si
mp[((d + e*x)^(m - 1)*(a + b*x + c*x^2)^(p + 1)*(2*a*c*(e*f + d*g) - b*(c*d*f + a*e*g) - (2*c^2*d*f + b^2*e*g
- c*(b*e*f + b*d*g + 2*a*e*g))*x))/(c*(p + 1)*(b^2 - 4*a*c)), x] - Dist[1/(c*(p + 1)*(b^2 - 4*a*c)), Int[(d +
e*x)^(m - 2)*(a + b*x + c*x^2)^(p + 1)*Simp[2*c^2*d^2*f*(2*p + 3) + b*e*g*(a*e*(m - 1) + b*d*(p + 2)) - c*(2*a
*e*(e*f*(m - 1) + d*g*m) + b*d*(d*g*(2*p + 3) - e*f*(m - 2*p - 4))) + e*(b^2*e*g*(m + p + 1) + 2*c^2*d*f*(m +
2*p + 2) - c*(2*a*e*g*m + b*(e*f + d*g)*(m + 2*p + 2)))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && Ne
Q[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && LtQ[p, -1] && GtQ[m, 1] && ((EqQ[m, 2] && EqQ[p, -3] &&
RationalQ[a, b, c, d, e, f, g]) ||  !ILtQ[m + 2*p + 3, 0])

Rule 826

Int[((f_.) + (g_.)*(x_))/(Sqrt[(d_.) + (e_.)*(x_)]*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)), x_Symbol] :> Dist[2,
Subst[Int[(e*f - d*g + g*x^2)/(c*d^2 - b*d*e + a*e^2 - (2*c*d - b*e)*x^2 + c*x^4), x], x, Sqrt[d + e*x]], x] /
; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]

Rule 1166

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
 q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{x^{3/2} (A+B x)}{\left (a+b x+c x^2\right )^2} \, dx &=-\frac{\sqrt{x} \left (a (b B-2 A c)+\left (b^2 B-A b c-2 a B c\right ) x\right )}{c \left (b^2-4 a c\right ) \left (a+b x+c x^2\right )}+\frac{\int \frac{\frac{1}{2} a (b B-2 A c)+\frac{1}{2} \left (b^2 B+A b c-6 a B c\right ) x}{\sqrt{x} \left (a+b x+c x^2\right )} \, dx}{c \left (b^2-4 a c\right )}\\ &=-\frac{\sqrt{x} \left (a (b B-2 A c)+\left (b^2 B-A b c-2 a B c\right ) x\right )}{c \left (b^2-4 a c\right ) \left (a+b x+c x^2\right )}+\frac{2 \operatorname{Subst}\left (\int \frac{\frac{1}{2} a (b B-2 A c)+\frac{1}{2} \left (b^2 B+A b c-6 a B c\right ) x^2}{a+b x^2+c x^4} \, dx,x,\sqrt{x}\right )}{c \left (b^2-4 a c\right )}\\ &=-\frac{\sqrt{x} \left (a (b B-2 A c)+\left (b^2 B-A b c-2 a B c\right ) x\right )}{c \left (b^2-4 a c\right ) \left (a+b x+c x^2\right )}+\frac{\left (b^2 B+A b c-6 a B c-\frac{b^3 B+A b^2 c-8 a b B c+4 a A c^2}{\sqrt{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{1}{\frac{b}{2}-\frac{1}{2} \sqrt{b^2-4 a c}+c x^2} \, dx,x,\sqrt{x}\right )}{2 c \left (b^2-4 a c\right )}+\frac{\left (b^2 B+A b c-6 a B c+\frac{b^3 B+A b^2 c-8 a b B c+4 a A c^2}{\sqrt{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{1}{\frac{b}{2}+\frac{1}{2} \sqrt{b^2-4 a c}+c x^2} \, dx,x,\sqrt{x}\right )}{2 c \left (b^2-4 a c\right )}\\ &=-\frac{\sqrt{x} \left (a (b B-2 A c)+\left (b^2 B-A b c-2 a B c\right ) x\right )}{c \left (b^2-4 a c\right ) \left (a+b x+c x^2\right )}+\frac{\left (b^2 B+A b c-6 a B c-\frac{b^3 B+A b^2 c-8 a b B c+4 a A c^2}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{x}}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{2} c^{3/2} \left (b^2-4 a c\right ) \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{\left (b^2 B+A b c-6 a B c+\frac{b^3 B+A b^2 c-8 a b B c+4 a A c^2}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{x}}{\sqrt{b+\sqrt{b^2-4 a c}}}\right )}{\sqrt{2} c^{3/2} \left (b^2-4 a c\right ) \sqrt{b+\sqrt{b^2-4 a c}}}\\ \end{align*}

Mathematica [A]  time = 1.14387, size = 339, normalized size = 1.06 \[ \frac{\frac{a \left (-\frac{\sqrt{2} \left (\frac{4 a A c^2-8 a b B c+A b^2 c+b^3 B}{\sqrt{b^2-4 a c}}+6 a B c-A b c+b^2 (-B)\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{x}}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{b-\sqrt{b^2-4 a c}}}-\frac{\sqrt{2} \left (-\frac{4 a A c^2-8 a b B c+A b^2 c+b^3 B}{\sqrt{b^2-4 a c}}+6 a B c-A b c+b^2 (-B)\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{x}}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{\sqrt{\sqrt{b^2-4 a c}+b}}+2 \sqrt{c} \sqrt{x} (2 A c-b B)\right )}{2 c^{3/2}}+\frac{x^{5/2} \left (A \left (-2 a c+b^2+b c x\right )-a B (b+2 c x)\right )}{a+x (b+c x)}+x^{3/2} (2 a B-A b)}{a \left (b^2-4 a c\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[(x^(3/2)*(A + B*x))/(a + b*x + c*x^2)^2,x]

[Out]

((-(A*b) + 2*a*B)*x^(3/2) + (x^(5/2)*(-(a*B*(b + 2*c*x)) + A*(b^2 - 2*a*c + b*c*x)))/(a + x*(b + c*x)) + (a*(2
*Sqrt[c]*(-(b*B) + 2*A*c)*Sqrt[x] - (Sqrt[2]*(-(b^2*B) - A*b*c + 6*a*B*c + (b^3*B + A*b^2*c - 8*a*b*B*c + 4*a*
A*c^2)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*Sqrt[x])/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/Sqrt[b - Sqrt[b^2 - 4
*a*c]] - (Sqrt[2]*(-(b^2*B) - A*b*c + 6*a*B*c - (b^3*B + A*b^2*c - 8*a*b*B*c + 4*a*A*c^2)/Sqrt[b^2 - 4*a*c])*A
rcTan[(Sqrt[2]*Sqrt[c]*Sqrt[x])/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/Sqrt[b + Sqrt[b^2 - 4*a*c]]))/(2*c^(3/2)))/(a*(b
^2 - 4*a*c))

________________________________________________________________________________________

Maple [B]  time = 0.039, size = 1059, normalized size = 3.3 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(3/2)*(B*x+A)/(c*x^2+b*x+a)^2,x)

[Out]

2*(-1/2*(A*b*c+2*B*a*c-B*b^2)/c/(4*a*c-b^2)*x^(3/2)-1/2*a*(2*A*c-B*b)/(4*a*c-b^2)/c*x^(1/2))/(c*x^2+b*x+a)+1/2
/(4*a*c-b^2)*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctanh(x^(1/2)*c*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(
1/2))*A*b-2/(4*a*c-b^2)*c/(-4*a*c+b^2)^(1/2)*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctanh(x^(1/2)*c*2^(1/
2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*a*A-1/2/(4*a*c-b^2)/(-4*a*c+b^2)^(1/2)*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*
c)^(1/2)*arctanh(x^(1/2)*c*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*A*b^2-3/(4*a*c-b^2)*2^(1/2)/((-b+(-4*a*c
+b^2)^(1/2))*c)^(1/2)*arctanh(x^(1/2)*c*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*a*B+1/2/(4*a*c-b^2)/c*2^(1/
2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctanh(x^(1/2)*c*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b^2*B+4/(4*a
*c-b^2)/(-4*a*c+b^2)^(1/2)*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctanh(x^(1/2)*c*2^(1/2)/((-b+(-4*a*c+b^
2)^(1/2))*c)^(1/2))*a*b*B-1/2/(4*a*c-b^2)/c/(-4*a*c+b^2)^(1/2)*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arcta
nh(x^(1/2)*c*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b^3*B-1/2/(4*a*c-b^2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*
c)^(1/2)*arctan(x^(1/2)*c*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*A*b-2/(4*a*c-b^2)*c/(-4*a*c+b^2)^(1/2)*2^(
1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(x^(1/2)*c*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*a*A-1/2/(4*a*
c-b^2)/(-4*a*c+b^2)^(1/2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(x^(1/2)*c*2^(1/2)/((b+(-4*a*c+b^2)^(
1/2))*c)^(1/2))*A*b^2+3/(4*a*c-b^2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(x^(1/2)*c*2^(1/2)/((b+(-4*
a*c+b^2)^(1/2))*c)^(1/2))*a*B-1/2/(4*a*c-b^2)/c*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(x^(1/2)*c*2^(1
/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b^2*B+4/(4*a*c-b^2)/(-4*a*c+b^2)^(1/2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c
)^(1/2)*arctan(x^(1/2)*c*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*a*b*B-1/2/(4*a*c-b^2)/c/(-4*a*c+b^2)^(1/2)*
2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(x^(1/2)*c*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b^3*B

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{{\left (B b - 2 \, A c\right )} x^{\frac{5}{2}} +{\left (2 \, B a - A b\right )} x^{\frac{3}{2}}}{a b^{2} - 4 \, a^{2} c +{\left (b^{2} c - 4 \, a c^{2}\right )} x^{2} +{\left (b^{3} - 4 \, a b c\right )} x} - \int \frac{{\left (B b - 2 \, A c\right )} x^{\frac{3}{2}} + 3 \,{\left (2 \, B a - A b\right )} \sqrt{x}}{2 \,{\left (a b^{2} - 4 \, a^{2} c +{\left (b^{2} c - 4 \, a c^{2}\right )} x^{2} +{\left (b^{3} - 4 \, a b c\right )} x\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(3/2)*(B*x+A)/(c*x^2+b*x+a)^2,x, algorithm="maxima")

[Out]

((B*b - 2*A*c)*x^(5/2) + (2*B*a - A*b)*x^(3/2))/(a*b^2 - 4*a^2*c + (b^2*c - 4*a*c^2)*x^2 + (b^3 - 4*a*b*c)*x)
- integrate(1/2*((B*b - 2*A*c)*x^(3/2) + 3*(2*B*a - A*b)*sqrt(x))/(a*b^2 - 4*a^2*c + (b^2*c - 4*a*c^2)*x^2 + (
b^3 - 4*a*b*c)*x), x)

________________________________________________________________________________________

Fricas [B]  time = 8.63365, size = 9650, normalized size = 30.06 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(3/2)*(B*x+A)/(c*x^2+b*x+a)^2,x, algorithm="fricas")

[Out]

-1/2*(sqrt(1/2)*(a*b^2*c - 4*a^2*c^2 + (b^2*c^2 - 4*a*c^3)*x^2 + (b^3*c - 4*a*b*c^2)*x)*sqrt(-(B^2*b^5 - 12*(4
*A*B*a^2 - A^2*a*b)*c^3 + (60*B^2*a^2*b - 12*A*B*a*b^2 + A^2*b^3)*c^2 - (15*B^2*a*b^3 - 2*A*B*b^4)*c + (b^6*c^
3 - 12*a*b^4*c^4 + 48*a^2*b^2*c^5 - 64*a^3*c^6)*sqrt((B^4*b^4 + A^4*c^4 - 2*(9*A^2*B^2*a - 2*A^3*B*b)*c^3 + 3*
(27*B^4*a^2 - 12*A*B^3*a*b + 2*A^2*B^2*b^2)*c^2 - 2*(9*B^4*a*b^2 - 2*A*B^3*b^3)*c)/(b^6*c^6 - 12*a*b^4*c^7 + 4
8*a^2*b^2*c^8 - 64*a^3*c^9)))/(b^6*c^3 - 12*a*b^4*c^4 + 48*a^2*b^2*c^5 - 64*a^3*c^6))*log(sqrt(1/2)*(B^3*b^7 -
 17*B^3*a*b^5*c - 32*A^3*a^2*c^5 + 16*(18*A*B^2*a^3 - 3*A^2*B*a^2*b + A^3*a*b^2)*c^4 - 2*(72*B^3*a^3*b + 72*A*
B^2*a^2*b^2 - 12*A^2*B*a*b^3 + A^3*b^4)*c^3 + (88*B^3*a^2*b^3 + 18*A*B^2*a*b^4 - 3*A^2*B*b^5)*c^2 - (B*b^8*c^3
 + 256*(3*B*a^4 - A*a^3*b)*c^7 - 64*(10*B*a^3*b^2 - 3*A*a^2*b^3)*c^6 + 48*(4*B*a^2*b^4 - A*a*b^5)*c^5 - 4*(6*B
*a*b^6 - A*b^7)*c^4)*sqrt((B^4*b^4 + A^4*c^4 - 2*(9*A^2*B^2*a - 2*A^3*B*b)*c^3 + 3*(27*B^4*a^2 - 12*A*B^3*a*b
+ 2*A^2*B^2*b^2)*c^2 - 2*(9*B^4*a*b^2 - 2*A*B^3*b^3)*c)/(b^6*c^6 - 12*a*b^4*c^7 + 48*a^2*b^2*c^8 - 64*a^3*c^9)
))*sqrt(-(B^2*b^5 - 12*(4*A*B*a^2 - A^2*a*b)*c^3 + (60*B^2*a^2*b - 12*A*B*a*b^2 + A^2*b^3)*c^2 - (15*B^2*a*b^3
 - 2*A*B*b^4)*c + (b^6*c^3 - 12*a*b^4*c^4 + 48*a^2*b^2*c^5 - 64*a^3*c^6)*sqrt((B^4*b^4 + A^4*c^4 - 2*(9*A^2*B^
2*a - 2*A^3*B*b)*c^3 + 3*(27*B^4*a^2 - 12*A*B^3*a*b + 2*A^2*B^2*b^2)*c^2 - 2*(9*B^4*a*b^2 - 2*A*B^3*b^3)*c)/(b
^6*c^6 - 12*a*b^4*c^7 + 48*a^2*b^2*c^8 - 64*a^3*c^9)))/(b^6*c^3 - 12*a*b^4*c^4 + 48*a^2*b^2*c^5 - 64*a^3*c^6))
 - 2*(5*B^4*a*b^4 - 3*A*B^3*b^5 - 4*A^4*a*c^4 + (20*A^3*B*a*b - 3*A^4*b^2)*c^3 + 3*(108*B^4*a^3 - 108*A*B^3*a^
2*b + 28*A^2*B^2*a*b^2 - 3*A^3*B*b^3)*c^2 - (81*B^4*a^2*b^2 - 65*A*B^3*a*b^3 + 9*A^2*B^2*b^4)*c)*sqrt(x)) - sq
rt(1/2)*(a*b^2*c - 4*a^2*c^2 + (b^2*c^2 - 4*a*c^3)*x^2 + (b^3*c - 4*a*b*c^2)*x)*sqrt(-(B^2*b^5 - 12*(4*A*B*a^2
 - A^2*a*b)*c^3 + (60*B^2*a^2*b - 12*A*B*a*b^2 + A^2*b^3)*c^2 - (15*B^2*a*b^3 - 2*A*B*b^4)*c + (b^6*c^3 - 12*a
*b^4*c^4 + 48*a^2*b^2*c^5 - 64*a^3*c^6)*sqrt((B^4*b^4 + A^4*c^4 - 2*(9*A^2*B^2*a - 2*A^3*B*b)*c^3 + 3*(27*B^4*
a^2 - 12*A*B^3*a*b + 2*A^2*B^2*b^2)*c^2 - 2*(9*B^4*a*b^2 - 2*A*B^3*b^3)*c)/(b^6*c^6 - 12*a*b^4*c^7 + 48*a^2*b^
2*c^8 - 64*a^3*c^9)))/(b^6*c^3 - 12*a*b^4*c^4 + 48*a^2*b^2*c^5 - 64*a^3*c^6))*log(-sqrt(1/2)*(B^3*b^7 - 17*B^3
*a*b^5*c - 32*A^3*a^2*c^5 + 16*(18*A*B^2*a^3 - 3*A^2*B*a^2*b + A^3*a*b^2)*c^4 - 2*(72*B^3*a^3*b + 72*A*B^2*a^2
*b^2 - 12*A^2*B*a*b^3 + A^3*b^4)*c^3 + (88*B^3*a^2*b^3 + 18*A*B^2*a*b^4 - 3*A^2*B*b^5)*c^2 - (B*b^8*c^3 + 256*
(3*B*a^4 - A*a^3*b)*c^7 - 64*(10*B*a^3*b^2 - 3*A*a^2*b^3)*c^6 + 48*(4*B*a^2*b^4 - A*a*b^5)*c^5 - 4*(6*B*a*b^6
- A*b^7)*c^4)*sqrt((B^4*b^4 + A^4*c^4 - 2*(9*A^2*B^2*a - 2*A^3*B*b)*c^3 + 3*(27*B^4*a^2 - 12*A*B^3*a*b + 2*A^2
*B^2*b^2)*c^2 - 2*(9*B^4*a*b^2 - 2*A*B^3*b^3)*c)/(b^6*c^6 - 12*a*b^4*c^7 + 48*a^2*b^2*c^8 - 64*a^3*c^9)))*sqrt
(-(B^2*b^5 - 12*(4*A*B*a^2 - A^2*a*b)*c^3 + (60*B^2*a^2*b - 12*A*B*a*b^2 + A^2*b^3)*c^2 - (15*B^2*a*b^3 - 2*A*
B*b^4)*c + (b^6*c^3 - 12*a*b^4*c^4 + 48*a^2*b^2*c^5 - 64*a^3*c^6)*sqrt((B^4*b^4 + A^4*c^4 - 2*(9*A^2*B^2*a - 2
*A^3*B*b)*c^3 + 3*(27*B^4*a^2 - 12*A*B^3*a*b + 2*A^2*B^2*b^2)*c^2 - 2*(9*B^4*a*b^2 - 2*A*B^3*b^3)*c)/(b^6*c^6
- 12*a*b^4*c^7 + 48*a^2*b^2*c^8 - 64*a^3*c^9)))/(b^6*c^3 - 12*a*b^4*c^4 + 48*a^2*b^2*c^5 - 64*a^3*c^6)) - 2*(5
*B^4*a*b^4 - 3*A*B^3*b^5 - 4*A^4*a*c^4 + (20*A^3*B*a*b - 3*A^4*b^2)*c^3 + 3*(108*B^4*a^3 - 108*A*B^3*a^2*b + 2
8*A^2*B^2*a*b^2 - 3*A^3*B*b^3)*c^2 - (81*B^4*a^2*b^2 - 65*A*B^3*a*b^3 + 9*A^2*B^2*b^4)*c)*sqrt(x)) + sqrt(1/2)
*(a*b^2*c - 4*a^2*c^2 + (b^2*c^2 - 4*a*c^3)*x^2 + (b^3*c - 4*a*b*c^2)*x)*sqrt(-(B^2*b^5 - 12*(4*A*B*a^2 - A^2*
a*b)*c^3 + (60*B^2*a^2*b - 12*A*B*a*b^2 + A^2*b^3)*c^2 - (15*B^2*a*b^3 - 2*A*B*b^4)*c - (b^6*c^3 - 12*a*b^4*c^
4 + 48*a^2*b^2*c^5 - 64*a^3*c^6)*sqrt((B^4*b^4 + A^4*c^4 - 2*(9*A^2*B^2*a - 2*A^3*B*b)*c^3 + 3*(27*B^4*a^2 - 1
2*A*B^3*a*b + 2*A^2*B^2*b^2)*c^2 - 2*(9*B^4*a*b^2 - 2*A*B^3*b^3)*c)/(b^6*c^6 - 12*a*b^4*c^7 + 48*a^2*b^2*c^8 -
 64*a^3*c^9)))/(b^6*c^3 - 12*a*b^4*c^4 + 48*a^2*b^2*c^5 - 64*a^3*c^6))*log(sqrt(1/2)*(B^3*b^7 - 17*B^3*a*b^5*c
 - 32*A^3*a^2*c^5 + 16*(18*A*B^2*a^3 - 3*A^2*B*a^2*b + A^3*a*b^2)*c^4 - 2*(72*B^3*a^3*b + 72*A*B^2*a^2*b^2 - 1
2*A^2*B*a*b^3 + A^3*b^4)*c^3 + (88*B^3*a^2*b^3 + 18*A*B^2*a*b^4 - 3*A^2*B*b^5)*c^2 + (B*b^8*c^3 + 256*(3*B*a^4
 - A*a^3*b)*c^7 - 64*(10*B*a^3*b^2 - 3*A*a^2*b^3)*c^6 + 48*(4*B*a^2*b^4 - A*a*b^5)*c^5 - 4*(6*B*a*b^6 - A*b^7)
*c^4)*sqrt((B^4*b^4 + A^4*c^4 - 2*(9*A^2*B^2*a - 2*A^3*B*b)*c^3 + 3*(27*B^4*a^2 - 12*A*B^3*a*b + 2*A^2*B^2*b^2
)*c^2 - 2*(9*B^4*a*b^2 - 2*A*B^3*b^3)*c)/(b^6*c^6 - 12*a*b^4*c^7 + 48*a^2*b^2*c^8 - 64*a^3*c^9)))*sqrt(-(B^2*b
^5 - 12*(4*A*B*a^2 - A^2*a*b)*c^3 + (60*B^2*a^2*b - 12*A*B*a*b^2 + A^2*b^3)*c^2 - (15*B^2*a*b^3 - 2*A*B*b^4)*c
 - (b^6*c^3 - 12*a*b^4*c^4 + 48*a^2*b^2*c^5 - 64*a^3*c^6)*sqrt((B^4*b^4 + A^4*c^4 - 2*(9*A^2*B^2*a - 2*A^3*B*b
)*c^3 + 3*(27*B^4*a^2 - 12*A*B^3*a*b + 2*A^2*B^2*b^2)*c^2 - 2*(9*B^4*a*b^2 - 2*A*B^3*b^3)*c)/(b^6*c^6 - 12*a*b
^4*c^7 + 48*a^2*b^2*c^8 - 64*a^3*c^9)))/(b^6*c^3 - 12*a*b^4*c^4 + 48*a^2*b^2*c^5 - 64*a^3*c^6)) - 2*(5*B^4*a*b
^4 - 3*A*B^3*b^5 - 4*A^4*a*c^4 + (20*A^3*B*a*b - 3*A^4*b^2)*c^3 + 3*(108*B^4*a^3 - 108*A*B^3*a^2*b + 28*A^2*B^
2*a*b^2 - 3*A^3*B*b^3)*c^2 - (81*B^4*a^2*b^2 - 65*A*B^3*a*b^3 + 9*A^2*B^2*b^4)*c)*sqrt(x)) - sqrt(1/2)*(a*b^2*
c - 4*a^2*c^2 + (b^2*c^2 - 4*a*c^3)*x^2 + (b^3*c - 4*a*b*c^2)*x)*sqrt(-(B^2*b^5 - 12*(4*A*B*a^2 - A^2*a*b)*c^3
 + (60*B^2*a^2*b - 12*A*B*a*b^2 + A^2*b^3)*c^2 - (15*B^2*a*b^3 - 2*A*B*b^4)*c - (b^6*c^3 - 12*a*b^4*c^4 + 48*a
^2*b^2*c^5 - 64*a^3*c^6)*sqrt((B^4*b^4 + A^4*c^4 - 2*(9*A^2*B^2*a - 2*A^3*B*b)*c^3 + 3*(27*B^4*a^2 - 12*A*B^3*
a*b + 2*A^2*B^2*b^2)*c^2 - 2*(9*B^4*a*b^2 - 2*A*B^3*b^3)*c)/(b^6*c^6 - 12*a*b^4*c^7 + 48*a^2*b^2*c^8 - 64*a^3*
c^9)))/(b^6*c^3 - 12*a*b^4*c^4 + 48*a^2*b^2*c^5 - 64*a^3*c^6))*log(-sqrt(1/2)*(B^3*b^7 - 17*B^3*a*b^5*c - 32*A
^3*a^2*c^5 + 16*(18*A*B^2*a^3 - 3*A^2*B*a^2*b + A^3*a*b^2)*c^4 - 2*(72*B^3*a^3*b + 72*A*B^2*a^2*b^2 - 12*A^2*B
*a*b^3 + A^3*b^4)*c^3 + (88*B^3*a^2*b^3 + 18*A*B^2*a*b^4 - 3*A^2*B*b^5)*c^2 + (B*b^8*c^3 + 256*(3*B*a^4 - A*a^
3*b)*c^7 - 64*(10*B*a^3*b^2 - 3*A*a^2*b^3)*c^6 + 48*(4*B*a^2*b^4 - A*a*b^5)*c^5 - 4*(6*B*a*b^6 - A*b^7)*c^4)*s
qrt((B^4*b^4 + A^4*c^4 - 2*(9*A^2*B^2*a - 2*A^3*B*b)*c^3 + 3*(27*B^4*a^2 - 12*A*B^3*a*b + 2*A^2*B^2*b^2)*c^2 -
 2*(9*B^4*a*b^2 - 2*A*B^3*b^3)*c)/(b^6*c^6 - 12*a*b^4*c^7 + 48*a^2*b^2*c^8 - 64*a^3*c^9)))*sqrt(-(B^2*b^5 - 12
*(4*A*B*a^2 - A^2*a*b)*c^3 + (60*B^2*a^2*b - 12*A*B*a*b^2 + A^2*b^3)*c^2 - (15*B^2*a*b^3 - 2*A*B*b^4)*c - (b^6
*c^3 - 12*a*b^4*c^4 + 48*a^2*b^2*c^5 - 64*a^3*c^6)*sqrt((B^4*b^4 + A^4*c^4 - 2*(9*A^2*B^2*a - 2*A^3*B*b)*c^3 +
 3*(27*B^4*a^2 - 12*A*B^3*a*b + 2*A^2*B^2*b^2)*c^2 - 2*(9*B^4*a*b^2 - 2*A*B^3*b^3)*c)/(b^6*c^6 - 12*a*b^4*c^7
+ 48*a^2*b^2*c^8 - 64*a^3*c^9)))/(b^6*c^3 - 12*a*b^4*c^4 + 48*a^2*b^2*c^5 - 64*a^3*c^6)) - 2*(5*B^4*a*b^4 - 3*
A*B^3*b^5 - 4*A^4*a*c^4 + (20*A^3*B*a*b - 3*A^4*b^2)*c^3 + 3*(108*B^4*a^3 - 108*A*B^3*a^2*b + 28*A^2*B^2*a*b^2
 - 3*A^3*B*b^3)*c^2 - (81*B^4*a^2*b^2 - 65*A*B^3*a*b^3 + 9*A^2*B^2*b^4)*c)*sqrt(x)) + 2*(B*a*b - 2*A*a*c + (B*
b^2 - (2*B*a + A*b)*c)*x)*sqrt(x))/(a*b^2*c - 4*a^2*c^2 + (b^2*c^2 - 4*a*c^3)*x^2 + (b^3*c - 4*a*b*c^2)*x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(3/2)*(B*x+A)/(c*x**2+b*x+a)**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(3/2)*(B*x+A)/(c*x^2+b*x+a)^2,x, algorithm="giac")

[Out]

Timed out